2012年4月10日火曜日

Jones et al. (2001)

Directional tuning of human forearm muscle afferents during voluntary wrist movements.

Kelvin E Jones, Johan Wessberg, and Ake B Vallbo.

1. Single unit activity was recorded with the microneurography technique from sixteen spindle afferents and one Golgi tendon organ afferent originating from the forearm extensor muscles. Impulse rates were studied while subjects performed unobstructed aiming movements at the wrist in eight different directions 45 deg apart. In addition, similar imposed movements were performed while the subject was instructed to remain relaxed. Movement amplitudes were about 5 deg and the speed 10-30 deg x s(-1). Joint movements were translated to movements of a cursor on a monitor to provide visual feedback. 2. Individual spindle afferents modulated their activity over a number of targets, i.e. were broadly tuned, during these aiming movements. The preferred direction for a spindle afferent was the same during both passive and active movements, indicating that the fusimotor effects associated with active contractions had little or no effect on the direction of tuning. 3. The direction of tuning of individual spindle afferents could be predicted from the biomechanically inferred length changes of the parent muscle. Thus spindle afferents responded as stretch receptors, i.e. impulse rates increased with lengthening and decreased with shortening, in active as well as passive movements. 4. Spindles from muscles, which continuously counteracted gravity exhibited a stretch response and directional tuning during the phase of movement alone whereas their position sensitivity was poor. In contrast, spindle afferents from the muscles that had no or minimal antigravity role were directionally tuned during both the dynamic and the static phase of the aiming task and their position sensitivity was substantially higher. 5. In spite of the limited data base from three extensor muscles it could be demonstrated that wrist joint position was remarkably well encoded in the ensemble muscle spindle data. In some cases the ensemble muscle spindle data encoded the instantaneous trajectory of movement as well.

J Physiol (Lond), 2001 vol. 536 (Pt 2) pp. 635-647

Milner et al. (1991)

Cutaneous afferent activity in the median nerve during grasping in the primate.

Theodore E Milner, Claude Dugas, Nathalie Picard, and Allan M Smith.

Abstract Neural activity was recorded from the median nerve of a monkey during grasping and lifting, using a chronically implanted cuff electrode. At the onset of lifting, there was an initial dynamic response during which the intensity of the neural signal increased rapidly. ...


Brain Res, 1991 vol. 548 (1-2) pp. 228-241

Weber et al. (2007)

Limb-state feedback from ensembles of simultaneously recorded dorsal root ganglion neurons.

D J Weber, R B Stein, D G Everaert, and A Prochazka.

Functional electrical stimulation (FES) holds great potential for restoring motor functions after brain and spinal cord injury. Currently, most FES systems are under simple finite state control, using external sensors which tend to be bulky, uncomfortable and prone to failure. Sensory nerve signals offer an interesting alternative, with the possibility of continuous feedback control. To test feasibility, we recorded from ensembles of sensory neurons with microelectrode arrays implanted in the dorsal root ganglion (DRG) of walking cats. Limb position and velocity variables were estimated accurately (average R2 values >0.5) over a range of walking speeds (0.1-0.5 m s(-1)) using a linear combination of firing rates from 10 or more neurons. We tested the feasibility of sensory control of intraspinal FES by recording from DRG neurons during hindlimb movements evoked by intraspinal microstimulation of the lumbar spinal cord in an anesthetized cat. Although electrical stimulation generated artifacts, this problem was overcome by detecting and eliminating events that occurred synchronously across the array of microelectrodes. The sensory responses to limb movement could then be measured and decoded to generate an accurate estimate of the limb state. Multichannel afferent recordings may thus provide FES systems with the feedback needed for adaptive control and perturbation compensation, though long-term stability remains a challenge.

J Neural Eng, 2007 vol. 4 (3) pp. S168-80

2012年2月28日火曜日

Burke et al. (1988)

Responses to passive movement of receptors in joint, skin and muscle of the human hand.

D Burke, S C Gandevia, and G Macefield.

1. Microneurographic techniques were employed to record unitary activity from afferents associated with digital joints of six conscious human subjects. Of 120 single afferents sampled from the median and ulnar nerves at the wrist, eighteen (15%) were classified as joint afferents; the majority of the sample (72.5%) were of cutaneous origin, and 12.5% were from muscle spindles and tendon organs. 2. Of the eighteen joint afferents six were tonically active in the rest position of the hand. All except two were recruited or accelerated their background discharge during passive joint movement. Three tonically active afferents were responsive to passive movement throughout the physiological range. The majority of the afferents, including the other three tonically active units, responded only towards the limits of joint rotation. 3. As a group, the sample of joint afferents had a limited capacity to signal the direction of joint movement. Nine of the sixteen joint afferents sensitive to movement responded in two axes of angular displacement, and two responded in all three axes. In any one axis of rotation eight afferents were activated in both directions of movement. However, one afferent, associated with the interphalangeal joint of the thumb, responded uni-directionally throughout the physiological range of joint movement and was thereby capable of adequately encoding joint position and movement. 4. Twenty-one of twenty-nine slowly adapting and eleven of eighteen rapidly adapting cutaneous afferents tested were activated by joint movement, but only towards the limits of joint rotation; half of the thirty-two movement-sensitive afferents were bi-directionally responsive. Muscle spindle afferents responded to stresses applied to the joint only if the resulting passive movement stretched the parent muscle. 5. It is concluded that human joint afferents possess a very limited capacity to provide kinaesthetic information, and that this is likely to be of significance only when muscle spindle afferents cannot contribute to kinaesthesia.

J Physiol (Lond), 1988 vol. 402 pp. 347-361

2012年2月8日水曜日

Wang et al. (2007)

The proprioceptive representation of eye position in monkey primary somatosensory cortex.

Xiaolan Wang, Mingsha Zhang, Ian S Cohen, and Michael E Goldberg.

The cerebral cortex must have access to an eye position signal, as humans can report passive changes in eye position in total darkness, and visual responses in many cortical areas are modulated by eye position. The source of this signal is unknown. Here we demonstrate a representation of eye position in monkey primary somatosensory cortex, in the representation of the trigeminal nerve, near cells with a tactile representation of the contralateral brow. The neurons have eye position signals that increase monotonically with increasing orbital eccentricity from near the center of gaze, with directionally selectivity tuned in a Gaussian manner. All directions of eye position are represented in a single hemisphere. The signal is proprioceptive, because it can be obliterated by anesthetizing the contralateral orbit. It is not related to foveal or peripheral visual stimulation, and it represents the position of the eye in the head and not the angle of gaze in space.

Nat Neurosci, 2007 vol. 10 (5) pp. 640-646

2012年2月1日水曜日

Giboin et al. (2012)

Enhanced propriospinal excitation from hand muscles to wrist flexors during reach-to-grasp in humans.

Louis-Solal Giboin, Alexandra Lackmy-Vall〓e, David Burke, and V〓ronique Marchand-Pauvert.

In humans, propriospinal neurons located at midcervical levels receive peripheral and corticospinal inputs and probably participate in the control of grip tasks, but their role in reaching movements, as observed in cats and primates, is still an open question. The effect of ulnar nerve stimulation on flexor carpi radialis (FCR) motor evoked potential (MEP) was tested during reaching tasks and tonic wrist flexion. Significant MEP facilitation was observed at the end of reach during reach-to-grasp but not during grasp, reach-to-point, or tonic contractions. MEP facilitation occurred at a longer interstimulus interval than expected for convergence of corticospinal and afferent volleys at motoneuron level and was not paralleled by a change in the H-reflex. These findings suggest convergence of the two volleys at propriospinal level. Ulnar-induced MEP facilitation was observed when conditioning stimuli were at 0.75 motor response threshold (MT), but not 1 MT. This favors an increased excitability of propriospinal neurons rather than depression of their feedback inhibition, as has been observed during tonic power grip tasks. It is suggested that the ulnar-induced facilitation of FCR MEP during reach may be due to descending activation of propriospinal neurons, assisting the early recruitment of large motoneurons for rapid movement. Because the feedback inhibitory control is still open, this excitation can be truncated by cutaneous inputs from the palmar side of the hand during grasp, thus assisting movement termination. It is concluded that the feedforward activation of propriospinal neurons and their feedback control may be involved in the internal model, motor planning, and online adjustments for reach-to-grasp movements in humans.

J Neurophysiol, 2012 vol. 107 (2) pp. 532-543

2012年1月19日木曜日

Dimitriou and Edin (2008)

Discharges in human muscle receptor afferents during block grasping.

Michael Dimitriou and Benoni B Edin.

Human grasping relies on feedforward control that is monitored and corrected on-line by means of sensory feedback. While much of the sensory mechanisms underpinning hand-object interaction are known, information has been lacking about muscle receptor responses during the phases before and after actual object contact. We therefore let subjects use their thumb and fingers to grasp blocks presented to them while we recorded muscle afferents from the thumb and finger extensor muscles along with wrist and digit kinematics, and electromyographic activity. The kinematics of the task was indistinguishable from "normal" grasping. None of the afferents encoded either object contact or finger apposition. Both primary and secondary afferents were more phase advanced on the parent muscle lengths than expected from previous studies as well as from their responses to imposed length changes of their parent muscles. Thus, the discharges of both primary and secondary afferents were well correlated to the tendon velocity of their parent muscles and that of primary afferents also to acceleration whereas neither appeared to encode muscle length as such. Decoding the velocity of muscle length changes were significantly improved if the discharge of Golgi tendon organ afferents were taken into account along with that of the muscle spindle afferents. We propose that these findings may be explained by the biomechanical properties of contracting muscles. Moreover, we conclude that it seems unlikely that the muscle spindle afferents recorded in this task have any role in providing "proprioceptive" information pertaining to the size of an object grasped.

Journal of Neuroscience, 2008 vol. 28 (48) pp. 12632-12642